MOLECULAR STRUCTURE OF (TRIBROMOGERMYL)MANGANESE PENTACARBONYL, $\mathrm{Br}_{3} \mathrm{GeMn}(\mathrm{CO})_{5}$

N. I. GAPOTCHENKO, N. V. ALEKSEEV, A. B. ANTONOVA, K. N. ANISIMOV, N. E. KOLOBOVA, I. A. RONOVA and Yu. T. STRUCHKOV
Institute of Organo-Element Compounds, Academy of Sciences of the U.S.S.R., Moscow (U.S.S.R.)
(Received February 15th, 1970))

SUMMARY
The molecular structure of $\mathrm{Br}_{3} \mathrm{GeMn}(\mathrm{CO})_{5}$ was determined by electron diffraction and the following bond lengths were found: $\mathrm{Mn}-\mathrm{Ge} 2.44, \mathrm{Ge}-\mathrm{Br} 2.31$, $\mathrm{Mn}-\mathrm{C} 1.84, \mathrm{C}-\mathrm{O} 1.16 \AA$.

INTRODUCTION

The synthesis and properties of (tribromogermyl)manganese pentacarbonyl, $\mathrm{Br}_{3} \mathrm{GeMn}(\mathrm{CO})_{5}$, have been reported previously ${ }^{1,2}$. In this communication we wish to present the results of the electron diffraction study of this compound in the vapour phase.

RESULTS AND DISCUSSION

The electron diffraction patterns were recorded on a EG-100M electronograph with the r^{3}-sector. The nozzle-to-plate distances were ca. 400 mm and 200 mm and accelerating potential of 40 kV was used. The modified molecular intensity function $s \cdot M$ (s) calculated in the usual way ${ }^{3-5}$, covers the s range from 1.3 to $27.6 \AA^{-1}$.

The molecular structure was determined by radial distribution method with the following assumptions: all the $\mathrm{Mn}-\mathrm{C}-\mathrm{O}$ fragments are linear, the angles at the Mn atom are octahedral and at the Ge atom tetrahedral. The structure was refined by least squares procedure in a version of stage-by-stage parameter refinement applied to the radial distribution and the molecular intensity curves.

For this purpose we used the program of the theoretical $s-M(\mathrm{~s})$ curve calculation taking into account non-nuclear scattering ${ }^{6}$. Hartree-Fock potentials ${ }^{7}$ for Mn, C and O atoms and Thomas-Fermi-Dirac potentials ${ }^{8}$ for Ge and Br atoms were used. The function of non-coherent electron scattering, $S(\mathrm{~s})$, was taken from Tietz's equation ${ }^{9}$; the phase shift $\Delta \eta$ was calculated using the reported method ${ }^{10}$.

The molecular geometry of $\mathrm{Br}_{3} \mathrm{GeMn}(\mathrm{CO})_{5}$ and the main parameters are given in Fig. 1.

The Ge atom co-ordination is distorted tetrahedral with following angles:

Fig. 1.
$\mathrm{Br}-\mathrm{Ge}-\mathrm{Br} 105^{\circ}$ and $\mathrm{Br}-\mathrm{Ge}-\mathrm{Mn} 113^{\circ}$. The Mn atom co-ordination is distorted octahedral with the angles $\mathrm{C}_{\mathrm{axial}}-\mathrm{Mn}-\mathrm{C}_{\text {equatorial }} 95^{\circ}$.

It should be noted that the $\mathrm{Ge}-\mathrm{Mn}$ bond length in the molecule $\mathrm{Br}_{3} \mathrm{GeMn}-$ $(\mathrm{CO})_{5}(2.44 \AA)$ is considerably shorter than in $\mathrm{Ph}_{3} \mathrm{GeMn}(\mathrm{CO})_{5}\left(2.54 \AA^{11}\right.$ and 2.60 \AA^{12}). The analogous shortening of a metal-metal bond with an increasing electronegativity of substituents bonded to a non-transition metal atom was found also in the series of other metal carbonyl derivatives containing bonds between a transition metal and an element of Group IVB ${ }^{13}$.

The refinement of the structure is in progress.

REFERENCES

1 K. N. Anisimov, N. E. Kolobova and A. B. Antonova, Ize. Akad. Nauek SSSR, Ser. Khim., (1968) 2664.

2 A. N. Nesmeyanov, G. G. Dvoryantzeva, T. N. Ul'yanova, N. E. Kolobova, K. N. Anisimov and A. B. Antonova, Izv. Akad. Nauk SSSR, Ser. Khim., (1967) 2241.

3 N. G. Rambidi, E. Z. Zasorin and B. M. Shchedrin, Zh. Strukt. Khim., 5 (1964) 503.
4 N. G. Rambidi and B. M. Shchedrin, Zh. Strukt. Khim., 5 (1964) 663.
5 B. M. Shchedrin and N. G. Rambidi, Zh. Strukt. Khim., 6 (1965) 3.
6 N. I. Gapotchenko, N. V. Alekseev and I. A. Ronova, Zh. Strukt. Khim., 11 (1970) 131.
7 T. G. Strand and R. A. Bonham, J. Chem. Phys., 40 (1964) 1686.
8 R. A. Bonham and T. G. Strand, J. Chem. Phys., 39 (1963) 2200.
9 T. Tietz, Phys. Rev., 113 (1957) 1521.
10 R. A. Bonham and T. Ukai, J. Chem. Phys., 36 (1962) 72.
11 B. T. Kilbourn, T. L. Blundell and H. M. Powell, Chem. Commun., (1965) 444.
12 Yu. T. Struchkov, K. N. Anismov, O. P. Osipova, N. E. Kolobova and A. N. Nesmeyanov, Dokl. Akad. Nauk SSSR, 172 (1967) 107.
13 B. P. Bir'yukov, Yu. T. Struchkov, K. N. Anisimov, N. E. Kolobova and V. V. Skripkin, Chem. Commun., (1967) 750; (1968) 159, 1193.

